Biogenic crust dynamics on sand dunes

Shai Kinast,1 Ehud Meron,1,2 Hezi Yizhaq,1 and Yosef Ashkenazy1

1Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
2Physics Department, Ben-Gurion University, Beer Sheva, 84105, Israel

(Received 5 July 2012; published 25 February 2013)

Sand dunes are often covered by vegetation and biogenic crusts. Despite their significant role in dune stabilization, biogenic crusts have rarely been considered in model studies of dune dynamics. Using a simple model, we study the existence and stability ranges of different dune-cover states along gradients of rainfall and wind power. Two ranges of alternative stable states are identified: fixed crusted dunes and fixed vegetated dunes at low wind power; and fixed vegetated dunes and active dunes at high wind power. These results suggest a crossover between two different forms of desertification.

DOI: 10.1103/PhysRevE.87.020701 PACS number(s): 87.23.Cc, 05.45.—a, 45.70.—n, 92.60.Gn

Sand dunes have been the subject of active research for many years, largely because of their fascinating shapes and dynamics [1–4]. Current studies have increasingly addressed the question of sand-dune stability in relation to climate change and anthropogenic disturbances [5–7]. Sand dunes are considered “stable” when they are fixed in place.1 Their stability is strongly affected by the degree of vegetation coverage. High coverage reduces the wind power at the dune surface and thereby acts to immobilize the dunes. The remobilization of fixed dunes, either by vegetation mortality or clear-cutting, often has detrimental effects on the unique ecosystems that develop in stable dunes [8,9], leading to irreversible loss of vegetative bioproductivity [18]. To study these questions, we introduce and analyze a new model, which extends an earlier model for vegetated dunes [19] to include crust dynamics.

The model describes the dynamics of two populations, vegetation and biogenic crust, which are represented by the fractions of surface cover v and b, respectively (0 < v + b < 1). It is a mean field model for a dune field that may cover many dunes. The growth of vegetation and crust is affected by two main environmental factors: precipitation, which promotes growth, and wind, which suppresses growth. In addition, the populations are assumed to compete with each other, as discussed below. The model consists of two coupled ordinary differential equations,

\[\dot{v} = \alpha_v(v + \eta_v)s - \epsilon_v D_p v g(v) s - \gamma D_p^i v - \phi_v v b \]
\[\dot{b} = \alpha_b(b + \eta_b)s - \epsilon_b D_p b g(w) s - \phi_b v b, \]

where s = 1 − v − b represents the remaining fraction of bare sand, and the over dot denotes the time derivative. The first terms on the right sides of Eqs. (1a) and (1b) represent logistic growth. Implicit in these growth forms is the assumption that the two life forms, crust and vegetation, locally exclude one another; the presence of crust in a given location prevents the germination of plant seeds, while the presence of vegetation inhibits crust growth by blocking sunlight. The growth rates of vegetation, \(\alpha_v \), and of biogenic crust, \(\alpha_b \), are assumed to have the following dependence on annual precipitation (p):

\[\alpha_i(p) = \begin{cases} \alpha_{i,\text{max}}(1 - e^{-(p-p_{i,\text{min}})/e_i}) & p \geq p_{i,\text{min}} \\ 0 & p < p_{i,\text{min}} \end{cases} \]

where \(i = v, b \), \(p_{\text{min}} \) is a precipitation threshold below which there is no growth, and \(\alpha_{i,\text{max}} \) is the asymptotic growth rate at high precipitation levels. This form is in accordance with field observations [22]. The parameters \(\eta_v \) and \(\eta_b \) represent

1We distinguish here between stable dunes and stable dune states. The former term refers to fixed or stationary dunes, whereas the latter refers to asymptotic stability in the sense of dynamical-system theory.
The potential bulk of sand that can be transported by the wind, \(D_p < 0.5 \text{m} \), and high energy winds (\(U_t > 200 \text{ m/s} \)). The parameter \(D_p \) can be considered as a drift potential, which is proportional to the square of the wind speed and the square of the wind speed minus the threshold velocity, as expressed by Eq. (3):

\[
D_p = (U^2(U - U_t)),
\]

where \(U \) is the wind speed and \(U_t \) is a threshold velocity that is necessary for sand transport (approximately 12 knots for wind measured at 10 m above the ground). If \(U \) is measured in knots (1 knot \(\approx 0.5 \text{ m/s} \)), the units of \(D_p \) are defined as vector units (VU). \(D_p \) can generally be classified into low, intermediate, and high energy winds (\(D_p < 200 \text{ VU} \), 200 VU < \(D_p < 400 \text{ VU} \), and \(D_p > 400 \text{ VU} \), respectively [2]).

The function \(g(v) \) introduces a wind shielding effect created by vegetation. Observations indicate [23] that when vegetative cover exceeds a certain value \((v_c) \), it induces a *skimming flow* in which sand is protected from direct wind action. This value depends on various properties, such as plant shape and stem flexibility [24,25]. Based on these studies, we chose a continuous step-like function for \(g(v) \):

\[
g(v) = \frac{1}{2} \left[\tanh \left(d(v_c - v) \right) + 1 \right],
\]

such that \(g \to 0 \) for \(v > v_c \) and \(g \to 1 \) for \(v < v_c \). The sharpness of \(g(v) \) is controlled by \(d \). Since the indirect wind effect requires the availability of sand, the whole term is multiplied by \(s \).

Direct wind effects are restricted, in the model, to vegetation and are represented by the third term in Eq. (1a). This term accounts for stresses, such as increased evapotranspiration and branch cutting. It does not have a parallel in Eq. (1b) since crust can sustain very intense winds [26]. Wind drag is proportional to the square of the wind velocity, and therefore, this term is proportional to \(D_p^{2/3} \).

The parameters \(\phi_v \) and \(\phi_b \) represent interactions between vegetation and crust. On one hand, crusts are known to support vegetation growth as a result of the “source-sink” effect [27], i.e., the interception of water runoff generated by the crust (“source”) at vegetation patches (“sink”). On the other hand, crust suppresses vegetation by preventing water infiltration and seed germination [28]. Biogenic crust is usually suppressed by plants due to litter from nearby plants that limits light and seed germination [29]. It is still debated whether the net effect of these interactions is positive or negative. Here, we assume that the negative relations are more significant.

The parameter values used in this study are based on Yizhaq et al. [19] for the equation of the vegetation dynamics [Eq. (1a)] and on the studies of Belnap et al. [13,26] for the crust [Eq. (1b)]. The numerical values are:

- \(\phi_v = 0.01 \text{ yr}^{-1} \);
- \(\phi_b = 0.01 \text{ yr}^{-1} \);
- \(p_{v, \text{min}} = 50 \text{ mm/year} \);
- \(p_{v, \text{max}} = 50 \text{ mm/year} \);
- \(\alpha_b = 0.15 \text{ mm/year} \);
- \(p_{b, \text{min}} = 20 \text{ mm/year} \);
- \(\eta_v = 0.2 \); \(\gamma = 8 \times 10^{-4} \text{ yr}^{-1} \text{ VU}^{-3/2} \);
- \(\epsilon_v = 10^{-4} \text{ yr}^{-1} \text{ VU}^{-1} \); \(\epsilon_b = 10^{-4} \text{ yr}^{-1} \text{ VU}^{-1} \);
- \(\alpha_v = 0.3 \); \(\alpha_b = 0.3 \);
- \(\gamma_v = 0.1 \); \(\gamma_b = 0.1 \); \(\epsilon_v = 10^{-4} \text{ yr}^{-1} \text{ VU}^{-1} \); \(\epsilon_b = 10^{-4} \text{ yr}^{-1} \text{ VU}^{-1} \); \(\phi_v = 0.01 \text{ yr}^{-1} \); \(\phi_b = 0.01 \text{ yr}^{-1} \); \(\alpha_v = 0.3 \); \(\alpha_b = 0.3 \); \(s = 0.3 \); \(d = 15 \).

The steady states of Eqs. (1a) and (1b) and their stability properties for low wind powers are presented in the bifurcation diagram shown in Fig. 2. The results are consistent with the general trend shown in Fig. 1 and reported in field observations [13]: a low precipitation range (a) of bare active dunes; intermediate precipitation ranges (b, c) of dunes with mixed crust-vegetation coverage, semistabilized (b) or almost stabilized (c); and a high precipitation range (d) of stabilized vegetated dunes. In addition, the diagram predicts a bistability range (c) of vegetation-dominated dunes \((v > v_c) \) and crust-dominated dunes \((v < v_c) \). The bistability results from the negative vegetation-crust interactions assumed in the model, which relies on the conjecture that a crusted soil prevents the germination of plant seeds and also reduces the infiltration of surface water into the soil, while a vegetated soil provides shading and possibly toxic materials that inhibit the growth of crusts.
A different type of bistability is known to exist in regions of strong winds and high precipitation \([9,19]\). This form of bistability results from the wind-shielding effect of the plants. The high wind power makes a bare dune active and suppresses plant growth, despite the high precipitation level. However, once the dune is vegetated, the wind-shielding effect of vegetation allows its persistence. Thus, two forms of bistability, designated here as Type I and Type II, are possible. Type I is associated with the wind-shielding effect of vegetation and occurs at high precipitation and strong winds. In this case, the stable dune states are bare active dunes and vegetated fixed dunes. Type II is associated with vegetation-crust competition, as Fig. 2 shows, and occurs at low precipitation and weak winds. Here, the possible stable dune states are crust-dominated dunes and vegetation-dominated dunes. While the bistability of Type I has been identified \([9,19]\), observations of Type II have not yet been reported.

Figure 3 shows the domains of the two bistability forms in the plane spanned by the precipitation \(p\) and the wind power \(D_p\). The two domains are connected to form a continuous bistability domain, in the limit of high \(p\) and high \(D_p\) values, a cross-over from the bistability of Type II to Type I occurs. Bounding the continuous bistability domain are monostability domains of unvegetated dunes (bare or crusted) at low \(p\) or high \(D_p\), and vegetated dunes at high \(p\) and low \(D_p\).

The existence of a biomass productive vegetation-dominated state and a less productive crust-dominated state, in the case of Type II bistability, implies the possible occurrence of desertification, i.e., a state transition inducing bioproductivity loss, as well as the feasibility of rehabilitation of vegetation, a state transition resulting in bioproductivity gain. By “bioproductivity,” we refer to the total amount of vegetative biomass. Such transitions can be triggered either by environmental variability, for example, precipitation or wind-power fluctuations, or by anthropogenic disturbances. The disturbance types that are necessary to trigger desertification or the rehabilitation of vegetation can be determined by examining the positions of the two stable states in relation to the boundary between their basins of attraction, as Fig. 4 illustrates. Disturbances involving vegetation removal can induce desertification (transition from point V to point B) only at sufficiently low precipitation levels [Figs. 4(a) and 4(b)]. At higher precipitation levels [Figs. 4(c) and 4(d)], the disturbance should also involve an increase in crust coverage (at the expense of sandy soil), a rather unlikely disturbance scenario. Rehabilitation of vegetation (transition from point B to point V) at relatively low precipitation levels [Figs. 4(a) and 4(b)] cannot be triggered by crust removal only—planting is also necessary. At higher precipitation levels [Figs. 4(c) and 4(d)], crust removal alone can trigger such rehabilitation.

The desertification form discussed above should be distinguished from that occurring in Type I bistability. In Type II bistability, both the productive and unproductive states (i.e., vegetated and crusted) represent stable, immobilized dunes, while in Type I, the nonvegetated (unproductive) state represents a mobile dune. Thus, desertification in the case of Type I bistability not only involves the loss of vegetation (bioproductivity) but may also lead to detrimental effects associated with dune mobility.

The model can be extended to study the effect of grazing on sand dune stabilization. Such study is motivated by a phenomenon that has been observed at the Israeli–Egyptian border, where sand dunes on the Egyptian side are active, while...
on the Israeli side, dunes are semistabilized. This difference in dune activity is the result of a vast cover of biogenic crust on the Israeli side and its absence on the Egyptian side. The phenomenon is clearly visible across the border line [see Fig. 1(e)] due to different albedo values for crust and sand. It has been argued that biogenic crust is absent from the Egyptian dunes due to grazing activities that have led to crust trampling and erosion [30].

Several studies have addressed the question of modeling grazing activities [31,32]. Here, grazing stress affects both vegetation and crust; while plants are being consumed by herbivores, the crust often breaks under their hoofs [33]. For simplicity, we assume that both processes are linearly dependent on the cover fraction and add the terms \((-\mu_v v\)) and \((-\mu_b b\)) to the right-hand side of Eqs. (1a) and (1b), respectively, where the parameters \(\mu_v\) and \(\mu_b\) represent the decay rates of vegetation and crust due to grazing [(\(\mu_v, b = (\text{yr}^{-1})\)]. Following Ref. [19], we set \(\mu_v = 0.01\) and choose \(\mu_b = 0.01\), assuming the crust decay rate is similar.

Applying the extended model to the Israeli-Egyptian border region (\(p \approx 100 \text{mm/yr}, D_p \approx 120 \text{VU}\)), we find that grazing activity can yield bare dunes with low cover of crust and plants (\(b = 0.09, v = 0.11 \rightarrow s = 0.8\)), while the absence of grazing yields crust-dominated dunes (\(b = 0.5, v = 0.1 \rightarrow s = 0.4\)). These results are in qualitative accordance with field observations [Fig. 1(e)]. We note that the absence of grazing can also yield vegetation-dominated dunes (Fig. 2, thin red line). However, this alternative stable state is not observed in the Israeli-Egyptian border region. We conclude that introducing grazing activity at low precipitation levels may have a major effect on the fraction of bare dunes, doubling it in the numerical example presented above.

Further analysis of the model reveals that the competition terms \(\phi_v b\) and \(\phi_b v\) in Eqs. (1a) and (1b), respectively, do not affect the qualitative results; the phenomena described above remain valid even when the competition terms are completely removed. We choose to keep these terms to allow the association of the model behaviors with different mechanisms of vegetation-crust competition.

In summary, a mathematical model was introduced to analyze the effect of biogenic crusts on sand dunes. Although simple, the model is able to capture important aspects of the complex dynamics of biogenic crusts and vegetation on sandy soils. Most significantly, it predicts a new form of bistability in which the two alternative stable states correspond to stabilized dunes with different proportions of vegetation and crust coverage. This bistability form (Type II) prevails at low precipitation and wind power values and differs from the bistability of bare dunes and vegetated dunes at high precipitation and wind power values (Type I) [9,19]. The two bistability forms merge in the \(p - D_p\) parameter plane to form a single continuous domain with a small crossover zone. The model sheds new light on the vulnerability of sandy regions to desertification and on the means to restore degraded vegetation.

We thank R. Amir, G. Bel, D. Perlstein, H. Tsoar, E. Zaady, Y. Zarmi, and Y. Zelnik for fruitful discussions. We thank the Israel Science Foundation for financial support.